1

1

1

1

1

1

1

1

Mark schemes

Q1.

(a) colourless

ignore clear

(b) damp litmus paper

(e) 1.5 × 10 0.9 × 10

(ratio =) 15 : 9

= 5 : 3

allow correct determination of the simplest whole number ratio from an attempt at a density ratio

alternative approach

(ratio =)

$$\frac{1.5}{0.9}$$
 $\frac{0.9}{0.9}$ (1)

1.666:1(1)

= 5:3(1)

allow correct determination of the simplest whole number ratio from an attempt at a density ratio

(f) the pipes will melt

01

the polymers will melt

allow the melting point of both polymers is below 300°C

(g)	oil is non-renewable or paper is obtained from a renewable source allow oil is finite	1	[9]
Q2.			
(a)	Mars	1	
(b)	20%	1	
(c)	algae and plants evolved	1	
	photosynthesis took place	1	
(d)	(y-axis labelled) 5, 10, 15, (20) allow (y-axis labelled) 4, 8, 12, 16, (20)		
	ignore correct intermediate values	1	
	oxygen bar drawn to 16%		
	allow a tolerance of ± ½ a small square	1	
(e)	test tube A	1	
(f)	a glowing splint	1	
(g)	manganese dioxide is a catalyst in this reaction	1	[9]

1

1

1

1

1

Q3.

to reduce the escape of gas (a)

(b) (mean rate =)

0.80 (cm³/s)

$$\frac{allow}{0.78 + 0.81 + 0.68 + 0.81}{4}$$
= 0.77 (cm³/s) for 1 mark

$$0.80 = \frac{20}{\text{mean time taken}}$$

allow correct use of incorrectly determined mean

(mean time taken =) $\frac{20}{0.80}$

$$= 25 (s)$$

alternative approach:

$$0.78 = \frac{20}{\text{time}}$$

$$0.81 = \frac{20}{\text{time}}$$
 (1)

(trial 1 time =
$$\frac{20}{0.78}$$
 =) 25.6 (1)

(trial 2 and 4 time =
$$\frac{20}{0.81}$$
 =) 24.7 (1)

$$\frac{20}{0.81}$$
 =) 24.7 (1)

(mean time =)
$$\frac{25.6 + (2 \times 24.7)}{3}$$
 (1)

$$= 25 (s) (1)$$

allow correct use of incorrectly determined value(s) for time

allow
$$\frac{25.6 + 29.4 + (2 \times 24.7)}{4}$$

1

1

1

1

= 26.1 (s) for **1** mark

(c) use a lower temperature

use sulfuric acid of a lower concentration

(d) (test)

burning / lit splint

allow flame

do not accept glowing splint

(result)

burns with a (squeaky) pop sound

allow pops

MP2 is dependent upon MP1 being awarded

[10]